
layer dominated by horizontal flow and
emphasize the unique character of the two
superplume regions, for which we bring
additional evidence of large-scale up-
welling. Although measurements of defor-
mation at the pressures and temperatures
corresponding to the CMB region are not
yet available, our results suggest that sim-
ilar relationships between anisotropic sig-
nature and flow prevail in the uppermost
and lowermost mantle.
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Siberian Peatlands a Net Carbon
Sink and Global Methane Source

Since the Early Holocene
L. C. Smith,1,2* G. M. MacDonald,1,3* A. A. Velichko,4

D. W. Beilman,1 O. K. Borisova,4 K. E. Frey,1 K. V. Kremenetski,1,4

Y. Sheng1

Interpolar methane gradient (IPG) data from ice cores suggest the “switching
on” of a major Northern Hemisphere methane source in the early Holocene.
Extensive data from Russia’s West Siberian Lowland show (i) explosive,
widespread peatland establishment between 11.5 and 9 thousand years ago,
predating comparable development in North America and synchronous with
increased atmospheric methane concentrations and IPGs, (ii) larger carbon
stocks than previously thought (70.2 Petagrams, up to 
26% of all ter-
restrial carbon accumulated since the Last Glacial Maximum), and (iii) little
evidence for catastrophic oxidation, suggesting the region represents a
long-term carbon dioxide sink and global methane source since the early
Holocene.

Ice-core records of atmospheric methane
concentration show dramatic peaks in the
early Holocene, drawing considerable de-
bate as to their source (1). Expansion of
tropical wetlands has emerged as a popular
hypothesis (2–5), in part because high-lat-
itude peatlands were not well developed in
North America by 
11,000 calendar years
ago (11 ka), a period of peak methane
concentration. However, the timing and
volume of peatland growth in Russia,
which contains perhaps half of the world’s
peat, is virtually unknown. Published esti-

mates of carbon storage in high-latitude
peatlands are poorly constrained but large
(180 to 455 Pg C) (6), representing up to

1/3 of the global soil carbon pool (1395
Pg C) (7 ). Most are known to have formed
since the Last Glacial Maximum and thus
represent a major terrestrial carbon sink
during the Holocene (8). However, the true
magnitude and timing of this sink is poorly
known because of insufficient data on peat-
land distribution through time (9), depth,
area, age, and carbon content (6, 10). These
uncertainties make it difficult to infer the
influence of northern peatlands on Holocene
greenhouse gas concentrations and to predict
the amount of sequestered carbon that could
potentially be mobilized under a warmer Arc-
tic climate through water table lowering, peat
oxidation, and CO2 outgassing (6, 11, 12);
biosphere uptake (11, 12); or increased dis-
solved organic carbon efflux to rivers (13).
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During summer field campaigns in
1999, 2000, and 2001 (14), we collected 87
peat cores from Russia’s West Siberian
Lowland (WSL), the world’s largest peat-
land complex (6 ) (Fig. 1). These campaigns
were directed at previously unstudied peat-
lands of the WSL, particularly in perma-
frost (15). Radiocarbon dating of peat ma-
terial at the base of each core establishes
the age of peatland initiation (table S1).
These radiocarbon dates, together with a
compilation of 139 additional dates gleaned
from a variety of published and unpub-
lished sources (16 ), provide a comprehen-
sive database of peatland initiation for the
entire WSL (Fig. 2). Figures 1 and 2 show
that WSL peatlands expanded broadly and
rapidly in the early Holocene (11.5 to 9 ka),
a period previously thought to be unfavor-
able for northern peatland development (1,
3, 4, 6, 9, 10, 17, 18). The rapidity of this
expansion directly contradicts a “steady-
state” peatland growth model previously
theorized for the region (18), and the timing
of maximum expansion is coincident with
peak values of atmospheric methane con-
centration as recorded in Greenland Ice
Sheet Project 2 (GISP2) and Taylor Dome
ice cores (Fig. 2).

There are several reasons to believe that
Siberian peatlands were a contributing
source to the high atmospheric methane
concentrations of the early Holocene. First,
field experiments confirm that the WSL is a
global source of methane today (19, 20).
Second, box-model studies of the interpolar
methane gradient (an indicator of the lati-
tudinal distribution of methane sources,
computed from the difference between
Greenland and Antarctic ice core methane
concentrations) strongly suggest existence
of a Northern Hemisphere methane source
(17, 21, 22). Figure 2 shows a sharp in-
crease (88 to 164%, or 30 to 41 Tg year–1)
in Northern Hemisphere emissions during
the early Holocene Preboreal period (9.5 to
11.5 ka) as compared with the Last Glacial
Maximum (17, 21) (tropical sources also
rose by 79 to 89%, or 53 to 58 Tg year–1).
This new Northern Hemisphere methane
source was not present during either the
Younger Dryas (11.5 to 12.5 ka) or
Bølling-Allerød (13.5 to 14.8 ka) periods.
Third, plausible area-based calculations for
possible early Holocene methane fluxes
yield large values. Through comprehensive,
geographic information system (GIS)–
based data inventory (23), we found that
WSL peatlands currently occupy 
600,000
km2. Inclusion of thin peats (�50 cm)
roughly doubles this extent (24 ). Applying
a contemporary flux range (4.2 to 195.3 mg
CH4 m�2 day�1 for 120 day year�1) (19) to
an early Holocene WSL landscape contain-
ing just one-half of today’s peatlands yields

an estimated 0.3 to 14 Tg year�1 CH4

release from the region. Actual emissions
could have been 
six times larger (1.8 to
84 Tg year�1), because, unlike today, mac-
rofossil assemblages in our cores show
domination by eutrophic fen species in the
early Holocene (25, 26 ). Furthermore, this
calculation ignores completely the possible
development of peatlands in central and
eastern Siberia, inclusion of which would
more than triple the total peatland area to
3.7 � 106 km2 today (27 ).

High-latitude peatlands have been
doubted as an early Holocene methane
source because of presumed aridity (4 ),
terrestrial glaciation (1–3), and the belief
that northern peatlands did not expand sub-
stantially until the mid-Holocene (6, 10, 17,
18). These reasons remain largely true for
North America. However, it now appears
improbable that the WSL was ice-covered
during the Last Glacial Maximum (28), and
in any event our radiocarbon dates establish

widespread peatland growth there from

11.5 to 9 ka. Closer inspection of Fig. 2
finds a robust increase in interpolar meth-
ane gradient during the Preboreal period
(9.5 to 11.5 ka) as compared with the
Younger Dryas (11.5 to 12.5 ka), requiring
the “switching on” of 
40 to 65% higher
(18 to 25 Tg year–1) Northern Hemisphere
methane source in the Preboreal. We be-
lieve we have found one such source in
Siberia.

Our GIS-based peatland inventory (23)
also finds that the WSL peat carbon pool
is substantially larger than previously
thought, primarily owing to new data from
ongoing Russian field survey programs and
our extension of coverage beyond that of
earlier inventories. Previous estimates
range from about 40 to 55 Pg C (27, 24 ).
Our compilation, digitization, and spatial
analysis of 
30,000 unpublished Russian
measurements of peatland depth, area, bulk
density, and ash content, combined with

Fig. 1. Location of peat cores drilled in this study. Circle diameters are scaled by basal radiocarbon
age. Broad spatial distribution of early Holocene ages [11,500 to 9000 calendar years before
present (11.5 to 9 cal ky BP)] confirms that West Siberian peatlands were widely established during
this time of high atmospheric methane concentration. Inset shows figure location and geographic
extent of our GIS-based peatland inventory.
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our own core, depth, ground-penetrating
radar, and visible/near-infrared satellite im-
agery data, yields a WSL peat carbon pool
estimate of 70.2 Pg C. This value is con-
servative because, like previous investiga-
tors (18, 24 ), we do not consider thin peats
(�50 cm) in our inventory. We also assume
only 52% peat organic carbon content (after
loss on ignition), a more conservative value
than is sometimes used (56 to 57% of total
peat mass) (10). With a minimum stock of
70.2 Pg C, the WSL represents a substantial
Holocene sink for atmospheric CO2, aver-
aging at least 6.1 Tg C year�1 for the past

11.5 ka and storing 7 to 26% of all ter-
restrial carbon accumulated since the Last
Glacial Maximum (270 to 1050 Pg C) (12).

Predicting how northern peat carbon
stocks may respond to a warming Arctic
climate is a complex problem that remains
intractable to date. One scenario is that
warming will fuel an appreciable new CO2

source, should currently frozen or water-
logged peats experience warmer tempera-
tures, permafrost degradation, decreased
water table elevation, and enhanced aerobic
decomposition (6, 11, 12). Such fluxes are
potentially large: Assuming no enhanced
carbon uptake by the biosphere or ocean,
complete oxidation of WSL peatlands over
the next 500 years would release 
140 Tg

C year�1 to the atmosphere, boosting the
present-day rate of atmospheric CO2 in-
crease by 0.07 parts per million by volume
year�1 (
4% faster than the current rise).
In terms of net greenhouse forcing, the
warming effect of such a release would
likely be offset by reduced methane emis-
sion (29) but, even in the unlikely event of
a total shutdown of methane emission,
would still attain at least 
80% of its
greenhouse warming potential (30). Evi-
dence for a recent slowdown or stoppage in
WSL peat accumulation does exist (31, 32),
and detailed studies of contemporary peat
accumulation rates are needed to confirm or
disprove this possibility. In the present
study, we measured fine debris fraction
(�150 
m) (33) throughout our cores to
address past decomposition history. We
found spatially and temporally varying de-
bris fractions (
25 to 70%) throughout the
region but little evidence for a sustained
interval of synchronous oxidation (34 ).
Therefore, we doubt occurrence of a past
event of massive, region-wide peat oxida-
tion and CO2 outgassing. However, our
evidence for low to moderate decomposi-
tion at all depths and latitudes does suggest
that most WSL peats have been subjected
to varying decomposition, even in current
permafrost regions. We therefore suggest

that West Siberian peatlands have behaved
primarily as a long-term sink of atmospher-
ic CO2 and net source of CH4 since their
rapid development in the early Holocene.
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Community Assembly Through
Adaptive Radiation in
Hawaiian Spiders

Rosemary Gillespie

Communities arising through adaptive radiation are generally regarded as
unique, with speciation and adaptation being quite different from immigration
and ecological assortment. Here, I use the chronological arrangement of the
Hawaiian Islands to visualize snapshots of evolutionary history and stages of
community assembly. Analysis of an adaptive radiation of habitat-associated,
polychromatic spiders shows that (i) species assembly is not random; (ii) within
any community, similar sets of ecomorphs arise through both dispersal and
evolution; and (iii) species assembly is dynamic withmaximum species numbers
in communities of intermediate age. The similar patterns of species accumu-
lation through evolutionary and ecological processes suggest universal princi-
ples underlie community assembly.

Community assembly has intrigued biologists
for decades (1), leading to a sophisticated
understanding of the ecological parameters
that dictate community membership (2). The
role of evolution in shaping communities is
also well appreciated (3, 4 ), although the
steps through which communities are
assembled as a result of evolutionary pro-
cesses have been enigmatic. Adaptive radi-
ations on remote islands provide opportu-
nities to study multiple communities, each

comprising closely related organisms—a
feature that has produced insights into evo-
lutionary patterns of species composition
and number (5). In particular, two patterns
have emerged: (i) A predictable number of
species can exist for a given area on remote
islands, apparently driven by higher rates
of speciation on larger islands (6 ); and (ii)
the end-product of adaptive radiation is
often a nonrandom set of species, with
lineages diversified in such a way that the
same set of ecomorph types occur on each
island (7, 8). These findings suggest that
evolution on more remote islands can act in
a manner analogous to immigration on less
remote islands, giving rise to similar spe-
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